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On the Role of the Plaque
Porous Structure in Mussel
Adhesion: Implications for
Adhesion Control Using Bulk
Patterning
Mussel adhesion is a problem of great interest to scientists and engineers. Recent micro-
scopic imaging suggests that the mussel material is porous with patterned void distribu-
tions. In this paper, we study the effect of the pore distribution on the interfacial-to-the
overall response of an elastic porous plate, inspired from mussel plaque, glued to a rigid
substrate by a cohesive interface. We show using a semi-analytical approach that the
existence of pores in the vicinity of the crack reduces the driving force for crack growth
and increases the effective ductility and fracture toughness of the system. We also demon-
strate how the failure mode may switch between edge crack propagation and inner crack
nucleation depending on the geometric characteristics of the bulk in the vicinity of the
interface. Numerically, we investigate using the finite element method two different void
patterns; uniform and graded. Each case is analyzed under displacement-controlled
loading. We show that by changing the void size, gradation, or volume fraction, we may
control the peak pulling force, maximum elongation at failure, as well as the total energy
dissipated at complete separation. We discuss the implications of our results on design of
bulk heterogeneities for enhanced interfacial behavior. [DOI: 10.1115/1.4041223]

1 Introduction

Mussel adhesion has been a problem of great interest to
scientists and engineers over the past two decades [1,2]. Mussels
achieve strong attachment, with high ductility, to organic and
inorganic surfaces in harsh under-water environments. The byssus
attachments enable the mussel to adapt to the lift and the drag of
ocean waves [3]. Mussel adhesion has provided a unique model
system to understand wet adhesion for biomimetic applications.

The Mussel adhesion problem has been extensively studied
within the scope of physical chemistry. The natural adhesive pro-
teins produced by the mussels play a major role in the adhesion.
Identifying the composition of the protein was the focus of many
prior studies [4–6]. Previous research showed that these proteins
can bond to different materials including glass, wood, and con-
crete. Further studies have been conducted to identify the genes
responsible for producing these adhesive proteins [7].

The role of mussel’s material mechanical properties has also
been partially investigated. Previous research suggests that the
material properties vary for different mussels, and that the attach-
ment strength may be enhanced by yield in plaque material before
failure [8]. The details of the plaque shape, mechanics, and
loading scheme were shown experimentally to be important in
determining the adhesion strength and mode of failure [9]. Three
modes of failure were reported experimentally: (i) Adhesive fail-
ure at the interface between the plaque and the substrate, (ii) inte-
rior cohesive failure of the plaque material within the center of the
plaque under the thread–plaque junction, and (iii) exterior cohe-
sive failure of the plaque material outside the center of the plaque
where a tear propagates to the plaque–substrate interface. Cohe-
sive failure within the plaque material occurs in cases of strong

chemical bonding at the interface. This paper focuses primarily on
investigating the first failure mode.

However, most studies focused on the biochemical properties
of mussel plaque proteins and surface conditions, without consid-
ering the role of structural features of the byssus that may play a
crucial role in enhancing the adhesion. Recent microscopy studies
on the plaque collected from mussels living in different environ-
ments suggest that the plaque structure is porous, as shown in
Fig. 1, and that the void pattern may vary from one environment
to another in response to the severity of loading the mussel is sub-
jected to [1]. Better understanding of the chemical, structural, and
mechanical principles of mussel adhesion may lead to controlled
synthetic systems with enhanced desirable proprieties, which may
pave the way to the development of optimized materials with
enhanced adhesion for technological and biological applications
[10]. The focus of this paper is thus to understand the role of bulk
porosity, a topic that has been largely overlooked in the literature,
in controlling the strength, ductility, and toughness of adhesive
interfaces in material systems inspired by mussel plaque.

2 Pulling of A Porous Plate: A Semi-Analytical Model

As a starting point for our analysis, we consider the problem of
pulling a porous 2D plate with unit thickness attached to a rigid
substrate. The plate material is assumed to be linear elastic, iso-
tropic, and homogenous. The model does not allow damage in the
plate material and failure occurs only due to detachment via adhe-
sive failure at the interface [9]. Furthermore, the voids are assumed
to have rectangular shape to simplify the analysis, but circular voids
are considered later in the finite element analysis. The thickness of
the strip adjacent to the interface is small compared to the void
width. Cohesive zone model (CZM) is used to model the adhesion
between the 2D plate and the substrate. The setup of the problem is
shown in Fig. 2(a), and due to symmetry, we analyze only one half
of the plate (Fig. 2(b)). An upward displacement is applied at the
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upper edge of the plate. The displacements at the top of all vertical
strips are assumed to be equal to u. The displacement in the x-
direction is restrained on the right and left boundaries.

The plate is attached to the substrate through a Constant-
strength (Dugdale) cohesive law as shown in Fig. 2(d). Due to the
voids, the failure mechanism is changed from detachment of solid
plate to peeling of the strip adjacent to the interface (the interfa-
cial horizontal strip). Since this strip has a small height to length
ratio, we idealize it as an Euler–Bernoulli beam on elastic founda-
tion, whereas each vertical leg may be represented by a distributed
stiffness Kv ¼ E=L representing the axial stiffness per unit area of
the legs. The simplified model is shown in Fig. 2(c).

The differential equation governing the beam deformation is

d4v

dx4
¼ w

EI
(1)

where v is the vertical deformation, E is Young’s Modulus, I is
the moment of inertia, and w is the distributed load per unit
length. Referring to Fig. 3, the value of w applied upward is either
bKvðucr � vÞ at the vertical webs locations or 0 under the void,
and the value of w applied downward is either 0 at the debonded
regions, or b�r at the damage zone. Since Dugdale’s cohesive law
is used, the bonded regions are assumed to be completely attached
to the substrate (v ¼ 0Þ:

Equation (1) is solved at different values of crack length a
to determine the process zone length l and the critical dis-
placement ucr required for unstable crack propagation at each
value of that crack length. We investigate two scenarios for
interfacial separation: (i) propagation of edge crack, and (ii)
Initiation of local cracks under the vertical webs. The two
cases are shown in Fig. 3. The solution details are shown in
Appendix.

Fig. 1 The adhesive system in mussels: (a) a mussel attached to substrate by threads ending in plaques, (b) stereo micro-
scope image of a M. californianus plaque under SEM, and (c) a cross section microscopic image of the plaque shows the
porous structure of the bulk material and the variance of void sizes and distribution (Reproduced with permission from Fili-
ppidi et al. [1], Copyright 2015 the Royal Society; permission conveyed through Copyright Clearance Center, Inc.).

Fig. 2 Setup of the analytical model for the pulling a porous pillar attached to a rigid substrate: (a) The geometry of the 2D pil-
lar with three near-interface rectangular voids, the pillar is subjected to an upward displacement, (b) the geometry and dimen-
sions of the part of the pillar near the crack tip where the thickness of the horizontal strip is th, the thickness of the vertical
strip is tv , the void width is W , the void height is L, and the crack length a, (c) the simplified beam on elastic foundation model
for the pillar with three rectangular voids, and (d) Dugdale’s traction separation relation for the cohesive interface
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After calculating the values of ucr and the constants for v, the
total force in the outer and inner legs for the case of edge crack
propagation is calculated by numerical integration as follows:

Po ¼
ðtv

0

bKv

EI
ucr � vðxÞð Þdx (2)

Pi ¼
ðWþ2tv

Wþtv

bKv

EI
ucr � vðxÞð Þdx (3)

And the total force is

P ¼ Pi þ Po (4)

And for local crack initiation (Fig. 3(b)), we calculate the criti-
cal force value

Pi ¼
ðtv=2

�tv=2

bKv

EI
ucr � vðxÞð Þdx (5)

Results of the Semi-Analytical Model. We solve the equa-
tions using the following set of parameters: For the porous plate,
the Young’s modulus¼ 500 MPa [8], and Poisson’s ratio¼ 0.45.
For the cohesive law, a constant stress (Dugdale) cohesive law is
used with �r ¼ 10 MPa and vo¼ 0.075 mm such that the cohesive
fracture energy¼ 750 J/m2 [11]. In addition, we consider a model
setup as shown in Fig. 2(a) and numerically simulate its pulling
response using finite element analysis with the same modeling
parameters to test the predictions of the approximate analytical
model. The displacements at the top of the plate and the top of the
two vertical ribs were compared to check the validity of the
assumption that they are equal. The difference in all modeled
cases was less than 5%. Furthermore, the results were verified to
be independent of mode mixity consistent with other studies for a
similar geometry [11].

(i) Force-displacement
The relation between crack length and corresponding

forces is plotted in Fig. 4(a). The semi-analytical results
show that the total force decreases initially, then increases
again till the crack propagates closer to the inner leg lead-
ing to a drop in the force. The increase in the force sug-
gests that the system still loads while the crack propagates.
Furthermore, a good agreement between the analytical and
numerical solutions is observed. The two solutions per-
fectly match in the middle zone. There is an error of order
of 10% in the force value when the crack tip is at the loca-
tion of the vertical strip. This is due to approximating the
vertical strips as axially loaded springs only and neglecting
their rotational stiffness.

(ii) Effect of horizontal interfacial strip thickness and void
width

To study the effect of the thickness (i.e., bending stiff-
ness) of the interfacial horizontal strip, the total force ver-
sus crack length relation is plotted for various values of
th=tv as shown in Fig. 4(b). The plot shows that decreasing
the thickness ratio results in higher drop in the force. How-
ever, in this limit, the force starts to increase at smaller
values of a, and the slope of this loading part is higher.
Also, the force required to propagate the crack under the
inner leg increases with reducing the interfacial horizontal
strip thickness.

Figure 4(c) shows the effect of increasing the void
width, which leads to higher force in the inner leg and
hence higher total force. This is true as long as local cracks
have not initiated under the inner leg (Fig. 3(b)). These
results suggest that reducing the thickness of the interfacial
horizontal strip, or increasing the void width, amplifies the
effect of the voids on crack propagation by redistributing
the forces and channeling the strain energy away from the
crack tip. For all the cases shown in Figs. 4(b) and 4(c),
the increase in force is associated with an increase in the
total displacement at failure and hence increase in total
fracture toughness.

(iii) Different failure criteria
Figure 4(d) shows the relation between the maximum

force in the inner leg and the interfacial horizontal strip
thickness from analytical and numerical solutions for two
values of void width W. The solid lines are from the ana-
lytical solution and the dashed lines are from the finite ele-
ment solution. The figure illustrates the two different
failure criteria: (i) the edge crack propagation and (ii) the
initiation of local cracks under the inner vertical legs, dis-
cussed analytically in this section. For the failure mode
where edge crack propagates, decreasing interfacial hori-
zontal strip thickness delays the crack propagation leading
to higher force in the inner legs. However, when the
stresses under those legs exceed the cohesive strength,
local separation initiates. The force required to initiate
local separation increases with increasing the thickness of
the interfacial horizontal strip. Increasing the void width
increases the force and shifts the boundary between the
two failure modes to the right as the void effect increases.

While the analytical solution presented in this section is
approximate, it illustrates a central result of this paper: when a
void is introduced close enough to the interface, and this notion of
closeness will be made precise in Sec. 4, the force-crack length
curve (R-curve) changes its qualitative trend as shown in Fig.
4(a). In particular, the macroscopic pulling force increases with
crack length instead of decreasing as in the case of pulling a solid
homogenous plate. In Secs. 3 and 4, we present detailed numerical
simulations of this phenomenon and further analyze how pattern-
ing voids in the vicinity of an interface may lead to stress

Fig. 3 Different cases of crack propagation under the elastic beam: (a) edge crack propa-
gates under the void and (b) onset of local crack initiation under the inner leg
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inhomogeneity at the interface and slow down or trap the crack
leading to more stretchability and increased apparent toughness of
the system.

3 Plate With Circular Voids: Numerical Model Setup

Figure 5 shows the setup of our numerical model. It is com-
posed of three parts: (i) a rigid base plate that represents the
substrate, (ii) a porous plate that mimics the mussel’s plaque

material, and (iii) a zero-thickness cohesive layer joining the two
components to represent the cohesion between the plate and the
substrate. The dimensions of the base plate are chosen in a way
that its boundaries have no effect on the results. The lower edge
of the base plate is restrained from movement in both directions.
A uniform upward displacement is applied at the top edge of the
porous plate, to mimic the displacement applied on the mussel
plaque through the thread.

To model the cohesive interface, we use a zero-thickness cohe-
sive element. We adopt a simple intrinsic triangular cohesive law
for mode I fracture composed of a linear elastic part up to the
critical cohesive stress rcr, followed by linear degradation that
evolves from crack initiation to complete failure. The analytical
expression for the cohesive law is given by Furgiuele et al. [12]

r Dð Þ ¼
KoD; D � cDf

rcrðDf � DÞ=ðDf � cDf Þ; cDf � D � Df

0; D � Df

8<
: (6)

where Ko is penalty stiffness of the cohesive law, Df is the failure
(total separation) normal displacement, and c is the ratio between
the critical and the failure normal displacements. Ko value can be
determined by selecting proper values of rcr and c. The total area
under the curve is the cohesive fracture energy Gc, and the length
on which stress changes from rcr (initiation of degradation) to 0
(total separation) defines the process zone length l, which is
related to the characteristic length Lch of the cohesive zone law
given by Ha et al. [13]:

Fig. 4 Results from the approximate analytical model and finite element simulations: (a) force versus crack
length from analytical and numerical solutions for th 5 5 mm, th/tv 5 1:0; W /th 5 5.0 showing that the total force
may continue to increase even though the crack is expanding, (b) force versus crack length for the analytical
model for various values of the interfacial horizontal strip to vertical web thickness ratio th/tv and the same void
width, (c) force versus crack length for the analytical model for the same interfacial horizontal to vertical strip
thickness ratio th/tv and various values of void width, and (d) maximum force in the inner leg versus interfacial
horizontal strip to vertical strip thickness ratio for two different values of W /tv from both the numerical and ana-
lytical solutions

Fig. 5 The geometry of the numerical model, which is com-
posed of a porous plate attached to a rigid substrate, throws a
zero-thickness layer of cohesive material
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Lch ¼
EGc

rcr
2

(7)

where E the is young’s modulus of the bulk material, Gc is the
cohesive model energy release rate, and rcr is the maximum
allowed stress. This is a fundamental length scale in our problem
that controls the solution dependence on the combination of mate-
rial properties.

The width of the plate Lp is chosen to be at least 20 times the
characteristic length of the cohesive zone. A notch of a length ao

is introduced at the edge of the interface to initiate the separation.
Here, we have chosen ao to be equal to 0.05 of the characteristic
length. We use the finite element software package ABAQUS [14].
We conduct Implicit dynamic analysis with slow loading rate to
represent a quasi-static pulling test under displacement-controlled
boundary conditions. The porous plate is meshed using 2D plane
strain quadrilateral elements, whereas the cohesive interface is
meshed using zero thickness cohesive elements. The size of the
cohesive elements is chosen to be Lch=50 at most to ensure numer-
ical stability and convergence [15]. We have conducted a mesh
sensitivity analysis to insure adequate accuracy.

All simulations presented in this section, unless otherwise
stated, have been run using the following set of parameters:
For the porous plate the Young’s modulus¼ 500 MPa [8],
and Poisson’s ratio¼ 0.45. For the cohesive law the critical
cohesive stress¼ 10 MPa, cohesive fracture energy¼ 750 J/m2,
and c ¼ 0:5: [11].

4 Numerical Model Results

Here, we consider the effects of void size, pattern, and volume
fraction on the force displacement response, stress distribution on
the interface, as well as the apparent fracture toughness for the
setup shown in Fig. 5. In all cases considered here, the plates have
the same material properties, and the same in-plane external

dimensions. The only controlled parameter is the void size and the
material volume; all other geometric parameters are adjusted
accordingly.

Effect of Void Size D. We normalize the void sizes by the
characteristic length of the cohesive law. The nominal stress is
calculated as the total plate force divided by the interfacial contact
area, and the nominal strain is calculated as the top vertical dis-
placement divided by the total plate height in the undeformed con-
figuration. All length scales are normalized by the characteristic
length of the cohesive law ðLchÞ, and all stress measures are nor-
malized by the cohesive strength (rcrÞ.

The nominal stress–strain curves for five models are compared
to the adjusted results of a solid plate in Fig. 6(a). The solid plate
has the same in-plane dimensions as the porous plates but differ-
ent thickness so that the material volume is the same. It is
observed that all tested porous plates give higher peak force and
stretchability (maximum deformation) than the solid plate for the
same solid material volume and in-plane dimensions. With
increasing the void size relative to characteristic length, separation
initiates at lower displacement values. This corresponds to the first
stress drops in the stress strain curve. However, the crack slows
down as it propagates beneath the first void allowing further
increase in load. The overall stretchability for larger voids is
higher. The crack slow-down effect is not noticed for the case of
small void sizes, (D=Lch ¼ 0:6); the crack propagates continu-
ously with no increase in force once the peak force is achieved.
The effective elastic stiffness for all porous plates is nearly the
same. The ultimate nominal stress increases slightly with increas-
ing the void size.

To analyze these results, the stress distribution at the interface
is plotted for two extreme cases: large void sizes (D=Lch ¼ 1:8)
and small void sizes (D=Lch ¼ 0:6) at different nominal strain lev-
els. Figure 6(b) (top) shows the evolution of stress distribution at
the interface for the case of larger void sizes; the stresses under

Fig. 6 Effect of void size: (a) normalized nominal stress versus nominal strain curves for the different plates with uniform
voids. The void diameter to characteristic length ratios are listed in the legend. The result for a solid plate with the same mate-
rial volume and in-plane dimension (but reduced thickness, i.e., reduced contact area) is also added for reference, (b) Normal-
ized stress distribution along the interface at different nominal strain levels: (top) case of uniform voids with D/Lch 5 1:8, and
(bottom) Case of uniform voids with D/Lch 5 0:6, and (c) maximum stretch and total energy versus relative void size.
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the vertical webs are high, whereas the values of stress under the
voids are much smaller. At the beginning of loading, the stresses
are high at the edges. This is where separation initiates. However,
due to existence of low stress areas, the separation rate slows
down allowing more compliant behavior. Thus, the strong stress
inhomogeneity at the interface enables achieving higher stretch
levels without significant reduction in maximum strength. The
inhomogeneous propagation of interfacial separation also explains
the small force drops observed in Fig. 6(a), where each drop cor-
responds to the progression of separation followed by a loading
phase corresponding to a transient arrest (or to a slowing down
phase).

For the case of small void sizes shown in Fig. 6(b) (bottom),
the stress values are not varying significantly over the interface.
The stress fluctuations about the mean value in this case are
smaller than that observed for the large void case. As a result,
after the separation initiates at the edge, it propagates faster than
the previous case. This leads to complete separation at a lower
stretch level.

Figure 6(c) shows that the maximum stretch scales nearly linear
with the void size when the void diameter is larger than process
zone length. Larger void sizes result in higher stretchability (for
the same value of void volume fraction). Decreasing void size rel-
ative to the process zone length significantly reduces the void
effects on stress distribution and stretchability. For voids with
diameters much less than the process zone length, the void effect
on the stress field is minor and the stress distribution at the inter-
face is nearly constant (not shown here). Thus, as the void size
decreases, the maximum nominal strain, at complete separation,
approaches a constant value. The total energy, computed as the
area under the stress strain curve, is also plotted in Fig. 6(c) and it
shows similar trend as the maximum strain. As the void size
increases, the total energy to failure also increases.

The numerical results suggest that increasing the void size com-
pared to the interfacial horizontal strip thickness enhances the
interfacial toughness by amplifying the void effect. However,
reducing the adjacent strip thickness to zero will require, theoreti-
cally, infinite force for the edge crack propagation mode. Hence,
the failure mode changes to the initiation of local cracks under the
inner vertical webs and the overall strength and energy dissipation
decreases. Figure 7(a) shows this nonmonotonic response. The
maximum nominal strain and the total energy start decreasing
when D=th exceeds 5, which mark the change in failure mode
from edge crack propagation to initiation of local cracks under the
webs for the specific material properties and geometric parameters
used. The total energy value when th ¼ 0 is shown on the same
plot. For large D=th ratios, the local crack initiation under the ver-
tical webs “fibrils” is shown in Fig. 7(b). The existence of the hor-
izontal strip allows for stress redistribution and contributes to the

stress heterogeneity on the interface. Thus, the overall response
may be optimized by tuning the thickness of the interfacial strip.
These numerical results agree with the analytical model results
shown in Fig. 4(d).

Effect of Void Pattern. Two different cases are modeled to
study the effect of gradation of void sizes on the effective nominal
stress–strain curve. In both cases, the plates have the same mate-
rial volume as the plates with uniform voids studied before. The
first plate has voids graded from D=Lch ¼ 0:7 at the interface to
D=Lch ¼ 1:2 at the top. The second plate has voids graded from
D=Lch ¼ 1:2 at the interface to D=Lch ¼ 0:7 at the top.

Figure 8(a) shows that when the gradation starts from larger
voids near the interface to smaller voids further up, both maxi-
mum stretch and ultimate force increase. Furthermore, we com-
pare each of the two graded models to the cases with uniform void
sizes, where the constant void size is chosen equal to the void size
in the row closest to the interface in the graded model. The results
suggest that the stretchability has increased but the stiffness has
decreased in both the graded cases compared to the corresponding
uniform cases.

To further investigate the effect of void gradation, the stress
distribution at the interface is plotted for the two graded designs
as shown in Fig. 8(b). For the graded case where larger voids are
placed closest to the interface, Fig. 8(b) (top) shows that the stress
distribution is similar to the case of uniform large voids in the
sense that there exist large stress fluctuations. This strong hetero-
geneity enables higher stretchability and increased resistance as
the rupture may not propagate coherently but is forced to slow
down or stop in regions with low stress. However, some differen-
ces between the graded and uniform cases exist. For example, the
development of local depressions in the stress peaks, in the case
of graded voids, suggests that multiple small cracks start to initiate
locally under the webs, leaving intact zones in between the voids.
This disintegration of the rupture process further toughens the
interface and increases the deformation capacity.

The case of graded voids is similar to the case of functionally
graded materials with graded elasticity modulus. Regions with
larger pores represent more compliant regions, whereas regions
with smaller pores represent stiffer regions. The observed results
suggest that grading the pores from larger near the interface to
smaller away from the interface, i.e., grading the elasticity modu-
lus from smaller near the interface to larger away from it, enhan-
ces the behavior. This is similar in principal to Gibson-soil-like
materials where graded elasticity was found to enhance flaw toler-
ance in the adhesive interfaces [16].

For the case of smaller voids near the interface shown in
Fig. 8(b) (bottom), the behavior is similar to the case of uniform

Fig. 7 Effect of void size to interfacial horizontal strip thickness ratio: (a) the maximum stretch and total energy versus void
diameter to interfacial horizontal strip thickness ratio and (b) normalized stress distribution along the interface at different
nominal strain levels for.D/th 5 6
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small voids in the sense that stress fluctuations are small. The
lower part of the plate is stiffer and thus exhibits limited deform-
ability compared to the case with larger voids near the interface.

The above results indicate that the maximum strength of the
porous plate is primarily controlled by the stress distribution under
the vertical webs, which is affected by the size of the voids closest
to the interface. The maximum deformation, on the other hand, is
more sensitive to the fluctuations in stress distribution on the
interface as well as the bulk compliance, which depends on the
void distribution throughout the whole plate.

Effect of Void Volume Fraction. To study the effect of voids
volume fraction, the force displacement curves for three different
volume fractions are plotted in Fig. 9, the plates have the same

number of voids, but the diameters are changed to change the vol-
ume fraction. The case of solid plate (0% volume fraction) is
added for reference.

It is shown that with decreasing the volume fraction, the peak
force increases but the peak displacement and the total area under
the curve decrease. Increasing the void volume fraction corre-
sponds to increasing the void size and reducing the spacing
between the voids. Larger spacing corresponds to longer segments
of the interface that are subjected to uniformly high stress, leading
to lower ductility and brittle failure. On the other hand, increasing
the void size increases the compliance of the plate and helps slow-
ing down the crack propagation under the void leading to higher
stretchability and thus higher energy dissipation until the limits
discussed in Fig. 7(a) are probed.

Energy Budget. The results in this section show that patterning
voids in the bulk affect the interfacial response. If compared with
a solid plate with the same material volume and outer dimensions,
a plate with voids gives higher peak force and stretchability in all
studied cases. This suggests that the distribution of voids in the
bulk, even in cases with the same effective bulk properties, may
influence the energy release rate for the interfacial crack changing
the effective toughness of the interface.

To demonstrate this, the strain energy of a plate with equal-
sized voids (D=Lch ranging between 0.6 and 1.8) is plotted against
separation length as shown in Fig. 10(a). The nominal
stress–strain curves for these cases are shown in Fig. 6(a).

Figure 10(a) shows that in the case of uniform small voids the
strain energy reaches its peak (which corresponds to the peak
force) at a small value of interfacial separation length and then
monotonically decreases with increasing the separation length.
However, the case of large voids is different. The strain energy
decreases with the initiation of separation first. This continues
until the crack reaches the low stress zones where it significantly
slows down allowing the energy to increase again. This transient
increase in the energy corresponds to a period of strain accumula-
tion in the bulk while the interfacial separation continues propa-
gating. This leads to higher stretchability before failure. After the

Fig. 8 Effect of void pattern: (a) normalized nominal stress versus nominal strain curves for the two plates with graded voids,
the plates geometries are shown in the legend, also the normalized nominal stress versus nominal strain for two plates with
equal void sizes D/Lch 5 0:7, and D/Lch 5 1:2 are added for comparison, and (b) normalized stress distribution along the inter-
face at nominal strain levels: (top) case of graded voids with larger voids (D/Lch 5 1:2) at the interface, and (bottom) case of
graded voids with smaller voids (D/Lch 5 0:7) at the interface

Fig. 9 Numerical results for plates with uniform voids for three
different voids volume fraction 60, 45, and 30%. The numbers in
the plot indicate the total area under the curve. The case of
solid plate is added for reference.
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strain energy reaches a peak value, it starts decreasing again as
the separation dynamically propagates along the interface.

Figure 10(b) shows the cumulative external work exerted on
the plates for different void sizes. The figure shows that with
increasing the void size, the work keeps increasing for longer sep-
aration length allowing the plate to gain higher strain energy till it
reaches the maximum value at the peak force. After this, the crack
starts propagating dynamically. Since the CZM assumes the
energy release rate in the cohesive layer is constant and equals to
Gc, the high strain energy cannot be balanced only by the dissi-
pated energy in the cohesive layer and kinetic energy starts to
appear.

In Fig. 11, the components of the total energy are plotted for a
plate with uniform voids of size D=Lch ¼ 1:8. The interfacial sep-
aration proceeds in two phases. The first phase is before reaching
the peak force where the external work is partitioned between
strain energy and energy dissipated by the cohesive interface dur-
ing separation. This is a phase of quasi-static crack growth. The
second phase is a phase of dynamic propagation after the peak
force has been achieved. In this phase, the total strain energy of
the plate decreases with crack propagation and a fraction of the
strain energy is transformed into kinetic energy. The kinetic

energy magnitude increases with increasing the void size as the
stored energy in the plate at the beginning of dynamic growth is
higher.

This analysis of energy budget supports the earlier observations
that the toughening effect of voids may be attributed to the result-
ing inhomogeneous crack growth. There are episodes of crack
growth in which there is a net increase in the bulk strain energy
and the external work rate is not constant. In these intervals, the
energy is dissipated along the interface at a reduced rate. To see
this, we recall that the rate of energy dissipation along the inter-
face is given by

@Ef

@a
¼ @Ef

@t

@t

@a
¼ 1

c

@Ef

@t
(8)

where Ef is the dissipated energy by fracture, and c is the crack
propagation speed.

From Fig. 11, @Ef =@a ¼ constant and from the prior discussion
on the role of stress inhomogeneity in slowing down the rupture
when propagating underneath the voids (i.e., c gets reduced) we
may conclude that @Ef =@t decreases in these regions enabling the
plate to store more elastic energy and to stretch longer.

5 Discussion

The primary result of this paper is that bulk heterogeneities
may change interfacial toughness. For the same intrinsic adhesive
properties of the interface, we may get higher ductility and dissi-
pated energy by changing the bulk structure. This may shed new
lights in the mechanics of adhesion in mussel plaque beyond the
role of interfacial physical chemistry. It is shown that a porous
plate gives higher peak force and exhibits more stretchability than
a solid plate with the same material volume and in-plane dimen-
sions. The peak force depends primarily on the contact area,
whereas the maximum elongation at failure depends mainly on
the stress distribution at the interface and bulk stiffness; both are
strongly dependent on the distribution of the voids in the bulk.

The effect of the stress distribution along the interface on the
peak force and the maximum displacement at failure is evident
from the cases investigated in the paper. Plates with larger voids
have stronger stress heterogeneity than plates with smaller ones.
The stronger the stress heterogeneity, the earlier the initiation of
the separation at edges where the stress is more concentrated. This
may cause a slight reduction, in general, in the peak elastic
force compared to cases where the stress is less heterogeneous.
However, regions of low stress may lead to slowing down of the
separation, thus allowing higher stretchability.

Fig. 10 Comparison of strain energy and external work versus separation length for plates with different void diameter to
characteristic length ratios: (a) strain energy of the whole plate versus separation length along the interface, and (b) the total
cumulative external work exerted on the plate versus separation length along the interface

Fig. 11 Energy components of the plate during the growth of
the interfacial separation versus separation length along the
interface for a plate with uniform distribution of voids with
D/Lch 5 1:8

121003-8 / Vol. 85, DECEMBER 2018 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org on 10/10/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Stress distribution at the interface is affected by the size and
distribution of the voids, the continuity of the vertical webs, and
the width of the horizontal strip near the interface. While the voids
closest to the interface have a major effect on the peak force and
maximum elongation, the gradation may further enhance the
response. For the cases studied, we have found that having larger
voids closer to the interface and smaller ones further away
increases both the maximum force and elongation more than the
other way around. Furthermore, the void effect is stronger if the
void diameter is larger than the process zone size and if the thick-
ness of interfacial horizontal strip is smaller than the process zone
size.

The heterogeneities in the current study take the form of voids
of different sizes. However, we hypothesize that similar conclu-
sions may be drawn for solid inclusions instead and some recent
work [17–19] has shown promising results in that direction. The
mechanism enabling this effect is the influence of heterogeneity
patterning on the strain energy distribution and consequently the
energy release rate of the crack propagating along the interface.
Furthermore, by investigating the energy partitioning during crack
growth, we have shown that the rate of energy dissipation on
the interface decreases during propagation underneath the voids
enabling the plate to store higher levels of strain energy and to
stretch longer. This opens new opportunities for altering interfa-
cial response without changing the surface physical chemistry but
through the introduction of near-interface voids.

Classically, enhancing interfacial toughness has been consid-
ered within the scope of problems in physical chemistry. By prop-
erly functionalizing the interface, properties like wetting, contact
angle, and adhesion energy may be controlled [2,20]. Over the
last two decades, it became clear that mechanics plays as much an
important role in this problem as chemistry. In particular, there
has been a surge of interest in patterning interfaces by introducing
periodic [21–23] or functionally graded inclusions along the
surfaces [24]. The nonuniformity of the fracture energy along the
interface may be leveraged to enhance the interfacial resistance to
separation and delamination by increasing the effective toughness
[25].

Alternatively, some recent numerical studies suggest increasing
interfacial adhesion by optimizing the distribution of interfacial
stresses inspired by the biological example of fibrils with
mushroom-shaped tips [26,27]. The simulations suggest that
reducing the stress magnitude at the corner points, which initiates
the crack propagation, significantly improves the interfacial adhe-
sion [28,29]. This idea was demonstrated using a composite fibril
composed of a stiff stalk and a soft tip rounded layer to decrease
the corner stress [30]. That work suggested new opportunities for
addressing the adhesion problem by manipulating bulk composi-
tion rather than changing interfacial properties. Here, we extend
this idea to consider the case of porous materials glued to an inter-
face since porous structures exist pervasively in engineering and
natural materials.

There is extensive literature on void growth as a toughening
mechanism in viscoplastic solids [31,32] and bonded elastic layers
including for example the problem of peeling of duct tapes.
Experimental studies show that one failure mode is associated
with cavitation in the adhesive layer and formation of fibrils
[33,34]. The cavitation/fibril formation processes help dissipate
energy and thus increases toughness. However, the void formation
and growth in these cases remain largely stochastic and suscepti-
ble to internal defect distributions. A systematic design for the
voids from the beginning, as proposed here, may achieve better
toughening results with a higher level of control. This may be par-
ticularly relevant for improving adhesion in soft polymeric materi-
als including emerging ones such as hydrogels.

Future extension of this study may include studying the effect
of void shape beyond the circular case investigated here as well as
the effect of bulk material nonlinearity and the possible tradeoff
between initiating failure in the bulk material versus separation
at the interface. We also hope that this work may inspire new

experimental work, which is needed to directly quantify the char-
acteristic length of the plaque adhesion (Eq. (7)) and thus deter-
mine, for different types of mussels, what range of values of D/Lch

may be most relevant. This will further contribute to our under-
standing of failure mode selection mechanism in these complex
systems.

6 Conclusions

In this paper, we investigated the role of bulk porosity in con-
trolling interfacial adhesion in structural systems inspired by the
mussel plaque. Our main conclusions are summarized as follows:

(1) The heterogeneity of stresses on the adhesive interface
plays a critical role in controlling the overall strength and
ductility of the bonded porous plate. As the stress heteroge-
neity increases, the crack may get trapped more frequently
in areas of low stress, leading to slower crack propagation,
higher peak forces, larger ductility, and increased energy
dissipation.

(2) The overall adhesion response depends on the details of the
void distribution in the bulk even if the plate has the same
void volume fraction and nearly the same elastic initial
stiffness. Larger voids near the interface lead to higher
stress heterogeneities and better overall response, in terms
of peak force and ductility.

(3) The thickness of the horizontal strip adjacent to the inter-
face plays a critical role in controlling the interfacial
strength and failure mode. In particular, for a given void
size, there is an optimum thickness for the horizontal strip
that balances the edge crack and local failure modes lead-
ing to greatest overall peak force. This also suggests that
having a horizontal strip may outperform the gecko-like
pillar model that has been widely investigated in the
literature.
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Appendix: Semi-analytical model

We investigate two scenarios for interfacial separation (Fig. 3):

Propagation of An Edge Crack

The resulting differential equations for different cases will be
one of the following forms:

(1) For debonded regions under the vertical webs

d4v

dx4
¼ bKv

EI
ucr � vð Þ (A1)

which has a solution of the form

v ¼ bKvucr

4k4EI
þ ekx C1cos kxð Þ þ C2sin kxð Þ

� �

þ e�kx C3cos kxð Þ þ C4sin kxð Þ
� �

(A2)
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where

k4 ¼ bKv=4EI (A3)

(2) For damage process regions under the vertical webs

d4v

dx4
¼ bKv

EI
ucr � vð Þ �

b�r
EI

(A4)

which has a solution of the form

v ¼ bKvucr � b�r

4k4EI
þ ekx C5cos kxð Þ þ C6sin kxð Þ

� �

þ e�kx C7cos kxð Þ þ C8sin kxð Þ
� �

(A5)

where k is the same as Eq. (5).
(3) For damage process regions under the void

d4v

dx4
¼ �b�r

EI
(A6)

which has a solution of the form

v ¼ �b�r
24EI

x4 þ C9x3 þ C10x2 þ C11x þ C12 (A7)

(4) For debonded regions under the voids

d4v

dx4
¼ 0 (A8)

which has a solution of the form

v ¼ C13x3 þ C14x2 þ C15x þ C16 (A9)

The mathematical framework governing the beam deflection at
any value of a is a combination of some or all of these equations
depending on the location of the crack tip. Since each equation
has four unknown constants, the total number of unknowns for
any case is 4n, where n is the number of equations in this specific
case, in addition to the damage zone length l and the critical dis-
placement ucr.

The boundary conditions required to solve the equations are

At x ¼ 0; v0 ¼ 0; and v000 ¼ 0 (A10)

At x ¼ a; v ¼ vo (A11)

At x ¼ aþ l; v ¼ v0 ¼ v00 ¼ 0 (A12)

In addition, at the boundary between any two zones, the conti-
nuity of deformation, slope, bending moment, and shear force
give 4 boundary conditions at ðn� 1Þ boundaries. The total num-
ber of boundary conditions is 4nþ 2 and the total number of
equations is 4nþ 2; hence, the system is solvable.

All the equations are nonlinear only in l. The equations are
solved iteratively by (i) looping over a suitable range of l based on
the analytical estimates of the process zone length [35], (ii) solv-
ing the resulting linear system, and then (iii) choosing the solution
that minimizes the error.

Initiation of Local Cracks Under the Vertical Webs

While the edge crack propagates, the required top displacement
ucr increases, and hence the force in the inner leg increases.
Cracks may initiate under the inner leg if the stresses exceed the
cohesive strength. The onset of crack initiation in this case is
shown in Fig. 3(b).

At the onset of failure under an inner leg, the governing equa-
tions are

d4v

dx4
¼ bKv

EI
ucr � vð Þ �

b�r
EI
; 0 � x � tv=2 (A13)

d4v

dx4
¼ � b�r

EI
; tv=2 � x � l (A14)

The solutions for these equations are the same as Eqs. (A8)
and (A10). The total number of unknowns is 10. The boundary
conditions are

At x ¼ 0; v ¼ vo; v0 ¼ v00 ¼ 0 (A15)

At x ¼ l; v ¼ v0 ¼ v00 ¼ 0 (A16)

in addition to 4 continuity conditions at x ¼ tv=2 for a total of 10
conditions. The same solution technique is used to determine the
critical displacement.
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